Kék fény: a jó és a rossz, A megvilágítás hatása az emberi látásra

A megvilágítás változásainak hatása az emberi látásra. Látás Szimpózium - Kivonatok | VisionLab, A megvilágítás változásainak hatása az emberi látásra

A horizontális sejtek a fotoreceptorok idegvégződései által alkotott rétegben, az úgynevezett külső szinaptikus rétegben teremtenek kapcsolatokat a szomszédos sejtek között, az amakrin sejtek pedig a bipoláris és ganglion sejtek közé ékelődve töltenek be hasonló funkciót.

2.2. A színlátás és világosságérzékelés folyamata

A fotoreceptorok koncentrikus felépítésű, ganglion sejtekhez kapcsolódó receptormezőkbe rendeződnek, melyek akár át is lapolódhatnak egymáson. A pálcikák nagyméretű, homogén mezőket alkotnak, közvetlen kapcsolatban pedig a megvilágítás változásainak hatása az emberi látásra egyféle bipoláris sejttel állnak.

a megvilágítás változásainak hatása az emberi látásra

Egy-egy pálcikákat összekapcsoló bipoláris sejthez hozzávetőlegesen receptor tartozik. Ezek a bipoláris sejtek soha nem állnak közvetlen szinaptikus összeköttetésben ganglion sejtekkel, a jelfolyamba minden esetben amakrin sejtek ékelődnek.

a megvilágítás változásainak hatása az emberi látásra

Hasonlóan a pálcikák és a hozzájuk kapcsolódó bipoláris sejtek kötegelődéséhez, egy-egy amakrin sejthez is több — nagyjából sejtenként 20 — pálcikákat összekapcsoló bipoláris kapcsolódik. A konvergencia a ganglion és amakrin sejtek között még ennél is nagyobb arányú lehet, esetenként egy-egy ganglion sejthez több mint száz pálcika jeleket továbbító amakrin sejt is tartozhat. Mindezekből könnyen kiszámítható, hogy a pálcikákra legjellemzőbb útvonalat követve egyeten ganglion sejthez akár sok tízezer receptor jele is befuthat.

Ez a nagymértékú, retinális rétegeken átívelő transzverzális konvergencia komoly szerepet játszik a pálcikák dominálta szkotópikus, azaz éjszakai látás nagymértékű érzékenységében. A csapok alkotta receptormezők felépítése nem homogén, centrális és perifériális részből áll 2.

a megvilágítás változásainak hatása az emberi látásra

A centrális és perifériális szegmensek közötti eltéréseket a kétféle, on és off típusú bipoláris sejtek alakítják ki. Ennek megfelelően a bipoláris sejtek úgy is felfoghatók, mint egyféle előjelképző állomások a ganglion sejtek és csapok, vagy csapok csoportjai között.

Daganatos betegségek, cukorbetegség, magas vérnyomás, emésztőrendszeri zavarok és depresszív tünetek oka is lehet.

Ennek megfelelően a ganglion sejtek viselkedése az előttük lévő bipoláris sejtek viselkedését tükrözik, de egyes esetekben horizontális és amakrin sejtek is módosíthatnak a jelfolyamon. On-centrum esetben a receptor mező perifériális részének ingerlése gátolja, centrális része pedig tüzelésre — jelkibocsájtásra - készteti a ganglion sejtet.

  • 2. fejezet - Az emberi látással kapcsolatos alapismeretek
  • Árt a szemnek a nem megfelelő szemüveg, vagy az elégtelen világítás?
  • Először rövidlátás

Off-centrum esetben a hatásmechanizmus éppen ellentétes, a központi terület bír gátló hatással, a perifériális részek pedig gerjesztik a ganglionok tüzelését. A receptor mezők mérete itt a legkisebb, akár egyes csapok is rendelkezhetnek külön kapcsolódási útvonallal, amíg a retina perifériális részei felé haladva a receptorok egyre nagyobb méretű receptív mezőket alkotnak.

Ez az egyik oka annak, hogy perifériális látásunk térbeli felbontása jóval gyengébb, mint azt látóterünk közepén tapasztaljuk. Ahogy a pálcikák alkotta mezők esetében, úgy a nagyobb méretű csap receptor mezők kialakításában az egyes receptorokból érkező jelek összefűzésével, esetenként a jelfolyam módosításával az amakrin és horizontális sejtek is szerepet játszanak.

a megvilágítás változásainak hatása az emberi látásra

A ganglion sejtek alkotják a látókéreg előtti utolsó állomást, így ezen sejtek akciós potenciáljai képezik a retina kimeneti jelét. Az PC és MC ganglion sejtek centrális és perifériális részből álló receptormezővel rendelkeznek, előbbiekhez kisebb méretű, utóbbiakhoz nagyobb kiterjedésű receptor mezők tartoznak, és amíg a PC ganglion sejtek színlátásunk alapjait képezik, és csak nagyon csekély mértékben érzékenyek a kontrasztváltozásokra, az MC típusúak nem játszanak fontos szerepet a színérzékelésben.

A KC típusú sejtek a megvilágítás változásainak hatása az emberi látásra többi ganglion típushoz képest kisméretűek, receptív mezejük csak centrális részt tartalmaz, amely kék csapokhoz kapcsolódva mindig on- vörös vagy zöld csaphoz csatlakozva pedig mindig off-típusú. Szerepük a megvilágítás változásainak hatása az emberi látásra mértékben még nem tisztázott, de a kontrasztérzékelésben van funkciójuk.

Látás Szimpózium - Kivonatok | VisionLab, A megvilágítás változásainak hatása az emberi látásra

Az ipRGC típusú ganglion sejtek receptor mezeje sokkal heterogénebb, csapokat és pálcikákat egyaránt tartalmaz, és az általuk továbbított ingerületek nem a vizuális ingerek kialakításában játszanak szerepet, hanem a fény nonvizuális hatásainak formálásáért felelnek.

Ezen vegyület lebomlásával önmagában is eredményezhet jelképzést a sejt kimenetén, azonban a teljes hatásmechanizmus működésében a ganglion sejt receptor mezejében elhelyezkedő csapoknak és pálcikáknak is szerepük van.

Az ipRGC ganglionok működésére jellemző, hogy lassan reagálnak a beérkező ingerekre, valamint az ingerek megszűnésére is 2. Az ipRGC ganglionok száma elenyésző a többi ganglion típushoz mérten, eloszlásuk a retinán nagyjából egyenletes.

A melatonin mennyisége határozza meg éberségi szintünket - ha ezen hormon szintje magas a véráramban, szervezetünk pihenő üzemmódba kapcsol, elálmosodunk és végül elalszunk. A cirkádián ritmus számos életfunkció váltakozását foglalja magában. Tartalmazza a pulzusszám, vérnyomás és testhőmérsékletet változását, valamint a melatoninon kívül egyéb hormonok, például a cortisol szintjét is.

a megvilágítás változásainak hatása az emberi látásra

A melanopszin molekula színképi érzékenységének maximuma a látható tartomány kék és ibolya szegmensébe tehető 2. Amikor az ipRGC ganglion sejtet és receptor mezejét olyan spektrális teljesítmény eloszlású fény ingerli, amely nagy mennyiségben tartalmaz kék komponenst, a melatonin hormon termelődése és kiömlése gátolt. Ha az ipRGC ganglionok ingerlése megszűnik, a vér melatonin szintje megemelkedik.

A pálcikák perifériális elhelyezkedésén túl ez okozza éjjeli látásunk rosszabb felbontóképességét. Cserébe a csapokhoz képest jóval érzékenyebb receptorok jeltovábbítása is gyorsabb a nappali látás által igénybevett csatornák jelterjedési sebességéhez képest. Szürkületi látáskor a pálcikák jelei réskapcsolatokon keresztül a csapoknak adódnak át, lehetővé téve ezzel a kétféle receptor együttes működését olyan megvilágítási körülmények között, amely ezt indokolttá teszi — a csapoknak látás fehér foltok túl kicsi, a pálcikáknak még túl nagy megvilágítási szint.

Sötétben a réskapcsolatok záródnak, a pálcikák jeltovábbítása pedig a bipoláris sejteken keresztül folyik tovább. A szürkületi, vagy más néven mezopos látás különös fontossággal bír járműoptikai alkalmazások esetén, ezért annak sajátosságaival a későbbiekben külön alfejezetben foglalkozunk. A színlátás és világosságérzékelés folyamata Színlátásunk mechanizmusának alapját a három különböző spektrális érzékenységgel rendelkező csap receptorból származó válaszjelek, valamint az általuk elindított retinális és agyi feldolgozási folyamatok adják.

Az előbbiekben ismertettük a fotoreceptorok és a hozzájuk kapcsolódó további retinális neuronok működését, ezen fejezetben pedig a színérzékelés rendszerszintű összefüggéseivel foglalkozunk. A trikromázia, vagyis a három eltérő érzékenységű fotoreceptor együttes működésének elmélete már jóval azelőtt alakot öltött, mintsem a csap receptorok három típusának fiziológiai igazolása megtörtént volna.

VILÁGÚJDONSÁG – A színhőmérséklet szabályozó érzékelő

Ennek a megvilágítás változásainak hatása az emberi látásra az a megfigyelés képezte, hogy három különböző, egymástól független alapszín additív keverékéből bármelyikszíninger létrehozható - az alapszínek függetlenségének kritériuma azt jelenti, hogy egyik alapszín sem lehet előállítható a másik kettő keverékeként. A színlátás trikromatikus szemléletű kutatásának úttörői, Young és Helmholz tehát pusztán elméleti alapon jutottak később helyesnek bizonyuló fiziológiai következtetésekre.

a megvilágítás változásainak hatása az emberi látásra

Hasonlóan elvi gyökerekkel rendelkezik a háromszín teóriát kiegészítő opponencia elmélet, vagy antagonisztikus szemléletmód, amely Hering nevéhez köthető. Az opponencia elmélet kiindulási alapja az a felismerés volt, hogy az alapszíneknek tekintett színingereknek vannak olyan kombinációi, amelyek logikailag elképzelhetőek, mégsem társul hozzájuk önálló színfogalom.

Ennek a megvilágítás változásainak hatása az emberi látásra nem érzékelünk és nevezünk meg vöröses-zöld, vagy kékes-sárga színingereket, ellentétben a sárgás-zöld és kékes-zöld vagy türkiz illetve a sárgás-vörös narancssárga vagy kékes-vörös bíbor ingerekkel, amelyek minden épszínlátó számára ismeretesek.

Harmadik opponens csatornaként számon tartunk egy akromatikus, azaz színingert nem, csak intenzitás értékeket kódoló csatornajelet is.

  • Они -- космический Шут мило Хедрон к собственно, которые поверхности.
  • Mit jelent a látásélesség 0 3

Elsőre úgy tűnhet, hogy a trikromácia és az opponencia elmélete nehezen egyeztethető össze, ennek okán a pontos fiziológiai háttér megismeréséig a két elméletet egymással szembenállónak tartották.

A primer szint a három eltérő színképi érzékenységgel rendelkező csap receptor válaszjele, amelyek további retinális feldolgozási mechanizmusokon keresztül a megvilágítás változásainak hatása az emberi látásra az opponencia elmélet által leírt csatornajelekké 2. Az emberi szem világosságérzékelésének spektrális vizsgálatai során kimutatták, hogy a nappali látásérzékelésünk hullámhosszfüggő hatékonyságát leíró függvény a V λ függvény, lásd később jól közelíthető a vörös-érzékeny L és zöld-érzékeny M csapok érzékenységi karakterisztikáinak súlyozott összegével.

Ez az összegzés az erre specializálódott ganglion sejteken keresztül történik. A világosságjel kialakításában szerepet játszó ganglion sejtek receptív mezejének mind külső, mind centrális részén L és M csapok is megtalálhatóak. Ezek jellemzően nagy kiterjedésű, széles laterális kapcsolatrendszerrel bíró mezők, melyek közt mind On- mind Off- centrum típusúak is megtalálhatóak. On-centrum esetében a receptív mező középpontjának ingerlésére nő meg a ganglion sejtek tüzelési frekvenciája, így ez a mechanizmus a sötét háttér előtt megjelenő világos objektumok érzékelését végzi.

Kék fény: a jó és a rossz, A megvilágítás hatása az emberi látásra

Off-centrum esetben a hatás pont az előző fordítottja, a környezetet alkotó csapok ingerlése gerjesztő, míg a centrumra eső fény gátló hatású a ganglion sejt kimenetére nézve, így a világos háttér előtt megjelenő sötét objektumok idéznek elő magasabb tüzelési frekvenciát. Különbség még az On-centrum és Off-centrum hogyan lehet javítani a szemlátást között, hogy működésük jellegéből adódóan utóbbiak kontrasztérzékenysége nagyobb.

Egyenletesen világos környezet esetében mindkét mezőkialakítás kimenete átlagos frekvenciával tüzel, hiszen a gerjesztő és gátló mezők egyszerre ingereltek, egyenletesen sötét háttér esetén pedig egyik esetben sincs jelképzés. Az akromatikus csatornajelet kialakító mechanizmus hatására jön létre a laterális gátlásnak nevezett folyamat, amelynek segítségével a receptor mezők szerkezetéből adódó következmények jól szemléltethetőek.

Az ilyen és ehhez hasonló retinális feldolgozási folyamatok irodai látásvizsgálat optikai csalódásokon keresztül érhetőek tetten.

A laterális gátlás működésének szemléltetésére az úgynevezett Hermann rács alkalmas, ahol nagyobb sötét tartományok között keskeny világos sávok futnak 2. Az ábrát vizsgálva feltűnik, hogy a látómezőnk perifériális részén a csomópontokban sötét foltokat érzékelünk, holott tudjuk, hogy a világos sávok kialakítása homogén.

Jobb világítás a jobb életminőségért

Az is feltűnik, hogy látómezőnk centrális részén a jelenség nem megfigyelhető. A fekete foltok kialakulásának magyarázata az, hogy amikor a szomszédos sötét mezők oldalai közti világos sávok képe On-centrum típusú receptív mezőre esik a retinán, a mezőhöz kapcsolódó ganglion sejt erős gerjesztést kap, hiszen a gátló területekre csak vertikális vagy horizontális irányban esik fény, így a gátló mező területének nagy része nem kap gerjesztést.

A csomópontokban, azaz a sötét mezők csúcsainál viszont a perifériális gátló mezőterület ingerlése az itt horizontális és vertikális irányban is jelenlévő csíkozatmiatt kétszeres az élek mentén kialakuló körülményekhez képest, így az agy azt az információt kapja, hogy a csúcsok közti terület sötétebb.

Ez egyfajta kontrasztkiemelő hatást eredményez, melynek következtében a kiterjedtebb sötét határral rendelkező világos képrészek intenzívebbnek tűnnek. Elmondható továbbá, hogy a retina centrális részére nem jellemző ez a fajta mező-szerkezet - ez a 2. Ennek oka, hogy a retina centrális részén a receptív mezők finomabb szerkezetűek. Megemlítendő még, hogy egyes források szerint az S csap is részt vesz az akromatikus csatornajel képzésében, de hatása a végső jelalakra igen csekély, gyakorlati szempontból elhanyagolható.

A kromatikus, vagyis színi információkat is kódoló csatornák közül a vörös-zöld opponenciát alkotó mechanizmus működése nagyon hasonló az akromatikus csatorna képzéséhez, és a foveális területen a színérzékelés mellett a nagyfelbontású kontrasztérzékelést is az elsősorban a vörös-zöld kromatikus csatorna formálását végző receptorok szolgálják ki. Eltérés a receptív mezők szerkezetében, valamint a jeltovábbítást végző idegpályákban és a hozzájuk kapcsolódó ganglion sejtek típusában van.

Gyakran feltett kérdések, 1. A megvilágítás változásainak hatása az emberi látásra Természetesen a kép bonyolódik, ha nem vagyunk biztosak, hogy egy adott terület világítási üzemideje számottevően meg fog-e változni, vagy sem. Az egyszerűség kedvéért, tételezzük fel, hogy nagy biztonsággal előre tudjuk vetíteni a várható üzemidőt.

A vörös-zöld opponens jel képzésében részt vevő receptor mezőket is L és M csapok alkotják, a mezők szerkezete azonban jóval rendezettebb, mint az akromatikus jelcsatorna esetében. Itt ugyanis a mezők centrális és perifériális része kizárólag egy-egy típust tartalmaz. Ha a centrumban L csapok helyezkednek el, a környezetben M típusúak, és fordítva. L típusú csapok alkotta centrum esetén, ha a beérkező fény vörös, a ganglion sejt tüzelési frekvenciája nagyobb lesz. Zöld fény beesése esetén nincs kimenő jel, mert a periférián elhelyezkedő M csapok ebben az esetben gátló hatásúak.

Sárga fény esetén a gerjesztés vegyes rövidlátás gátlás azonos mértékű, így a tüzelési frekvencia átlagos lesz 2.

A megvilágítás változásainak hatása az emberi látásra - PURKINJE HATÁS

Ennek megfelelően elmondható, hogy a ganglion sejt kimenetén az akciós potenciálok tüzelési frekvenciája a beeső fény vörös-zöld arányával megegyező nagyságú lesz. M típusú centrummal rendelkező receptív mezők esetében a mechanizmus működése ugyanilyen, csak fordított előjelű. A kromatikus csatornajeleket képző ganglion sejtek PC típusúak, elhelyezkedésük túlnyomó többségben a foveolára koncentrálódik. A receptív mezők szerkezete jóval finomabb, mint az akromatikus jeleket képző mezőké, akár egyetlen direkt kapcsolattal rendelkező csap is alkothatja a mező centrális részét.

Ennek a nagyon finom sejtmintázatnak a kialakításához a vaskos idegpályák nem megfelelőek, így a jeltovábbítás nem a már ismert magnocelluláris pályákon, hanem a sokkal vékonyabb axonok idegsejt nyúlványok alkotta parvocelluláris idegpályákon történik.

Ez lehetővé teszi a vizuális ingerek finomabb részleteinek feldolgozását is. A kapcsolódó ganglion sejtek számára ezen receptorok szolgáltatják a kék fény beesése esetén szükséges gerjesztést, a gátló hatást pedig a receptív mező másik részén található M és L csapok alkotta receptor köteg váltja ki.

Emberközpontú világítás Jobb világítás a jobb életminőségért Az emberek manapság mesterséges megvilágítás mellett dolgoznak éjszakai műszakokban vagy ablak nélküli épületekben. Ezért a természetes megvilágítási szint napi változása, valamint az éjszakai sötétség már kevésbé vannak hatással az emberekre.

A sárga ingert nem külön csaptípus, hanem az M és L csapok együttes jelenléte biztosítja a receptor mező gátló területein, amelynek hatására a gátlás mértéke ezen csapok együttes ingerlésének mértékével, azaz az L és M csapok jelének összegeként leírható sárga színinger mértékével lesz arányos.

A sárga-kék opponens párt képző receptor mezők felépítése a másik kromatikus csatornával megegyező módon finomszerkezetű, a jeltovábbítás itt is a vékonyabb parvocelluláris idegpályákon keresztül történik. Az így kialakult kromatikus és akromatikus csatornajelek ezután a látóidegen keresztül az agyba továbbítódnak. A rendezett kötegben futó látóidegpályák mentén még az agy releváns részének elérése előtt megkezdődik a jelek feldolgozása, a kép már itt élekre, formákra, tónusokra bomlik, majd a megfelelő axonok az agy tarkó felöli területén megtalálható látókéregbe, más néven cortexbe továbbítják a jeleket.